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Molecular static and dynamic polarizabilities for thirteen small molecules have been calculated using four
“black box” ab initio methods, the random phase approximation, RPA, the second-order polarization propagator
approximation, SOPPA, the second-order polarization propagator approximation with coupled cluster singles
and doubles amplitudes, SOPPA(CCSD), and the coupled cluster singles and doubles linear response function
method, CCSDLR. The frequency dependence of the polarizabilities is given in terms of the dipole oscillator
strength sum rules or Cauchy momentsS(-4) andS(-6). Two basis sets were employed, Sadlej’s medium
size polarized basis set and Dunning’s correlation consistent basis set of triple-ú quality augmented by two
diffuse functions of each angular momentum (daug-cc-pVTZ). The results are compared to other theoretical
results as well as to experimental values for the static polarizabilities, polarizability anisotropies, and Cauchy
moments. Frequency-dependent polarizabilities and polarizability anisotropies, calculated at the CCSDLR
level using the daug-cc-pVTZ basis set, are presented for five typical laser frequencies.

1. Introduction

The molecular dipole polarizability enters into the description
of many physical and chemical processes, such as the scattering
of light by molecules, and intermolecular interactions. Calcu-
lated polarizabilities are often used in the verification of
experimental data and in the prediction of properties of new
chemical species. An accuracy of a few percent in the calculated
values is necessary for this purpose.

Over the years several methods for the calculation of
molecular properties have emerged. Among these are correlated
methods, i.e. methods trying to improve on the Hartree-Fock
approximation by perturbation theory or a multiconfigurational
ansatz, as well as density functional theory (DFT) methods. Most
of these methods, however, are only capable of calculating static
properties like the static molecular polarizability, excitation
energies, and transition moments. A direct comparison of
calculated and experimental polarizabilities requires the ability
to calculate frequency-dependent polarizabilities since experi-
ments are mostly performed at nonzero frequencies.

In an earlier study1 the performance of some perturbation
theory methods in the calculation of static polarizabilities was
investigated. In this work, calculations of static and dynamic
molecular polarizabilities are presented using four different
“black box” methods, that is, methods where the only choices
to be made are of the basis set and molecular geometry. These
methods are in contrast to multiconfigurational methods where
the selection of configurations to be included in the wave
function requires considerable experience and might even

become impossible for larger molecules. The black box
methods, on the other hand, are relatively easy to use also by
nonexperts, and their application is, apart from hardware
limitations, not restricted to small molecules.

The methods employed here are the random phase ap-
proximation, RPA,2 the second-order polarization propagator
approximation, SOPPA,3,4 the second-order polarization propa-
gator approximation with coupled cluster singles and doubles
amplitudes, SOPPA(CCSD),5 and finally the coupled cluster
singles and doubles linear response, CCSDLR6 method. Thir-
teen molecules containing atoms from the first to third row of
the periodic table have been investigated. Static polarizabilities
of the same set of molecules were recently calculated as energy
derivatives by McDowell et al.7 using some perturbation and
DFT methods. Our results for the static polarizability and
polarizability anisotropy are compared with their calculations
as well as with experimental values. The calculated frequency
dependence of the polarizability, in terms of dipole oscillator
strength sum rules or Cauchy moments, is compared with
experimental sum rules obtained by Meath and co-workers8-14

and Hohm.15,16 Finally we give our best estimate of the value
of the dipole polarizability and anisotropy for each of the thirteen
molecules for a set of five commonly used experimental
frequencies.

2. Theory

The methods used in this study are all response methods.
This means that they describe the response of an observable to
an external or internal perturbation. The use of response
methods originated in various disciplines in physics. In
statistical physics, they were used as time-correlation functions
in various problems in the form of Greens functions.17,18
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Linderberg and O¨ hrn first showed the usefulness of the response
functions in quantum chemistry.19 Since then a number of
methods have been developed on the basis of their original ideas.
Four of these methods are employed here.

In the response function terminology the frequency dependent
polarizabilityR(-ω; ω) is defined through an expansion of the
ith Cartesian component of the time-dependent electronic dipole
moment,µi(t), in the periodic electric field of strengthEω

where µi(0) is the ith Cartesian component of a possible
permanent electronic dipole moment. In exact response theory
the time-dependent dipole moment is expressed as a time-
dependent expectation value of the dipole operatorµ̂i,

An ansatz is made for the exact time-dependent wave function,
|0(t)〉, in eq 2, the time-dependent coefficients of the wave
function,|0(t)〉, are expanded in orders of the perturbation, and
the coefficients are determined by means of a time-dependent
variation principle. In analogy to eq 1 an expression for the
frequency-dependent polarizability can then be obtained from
the Fourier transform of the first-order term in the expansion
of eq 2, i.e. the term which is linear in the perturbation

whereh is an excitation/deexcitation operator manifold contain-
ing all single, double, etc., excitations and deexcitations.

Different approximations can be applied to this exact expres-
sion by truncating the operator manifold,h, and choosing an
approximate time-independent wave function,|0〉 for example
by employing the standard Møller-Plesset expansion of the
wave function and partitioning of the Hamiltonian.20 Keeping
all terms through zeroth order only, the uncoupled Hartree-
Fock method21 is obtained, while retaining all first-order terms
yields the RPA2 or time-dependent Hartree-Fock, TDHF.22 For
static properties this method is equivalent to the coupled
Hartree-Fock method23 or to the finite field method24 using
an SCF wave function. Including also second-order terms in
the response function the SOPPA3,4 is obtained. The SOPPA
method gives excitation energies and transition moments correct
to second order, whereas the response function like the
frequency-dependent polarizability is correct through second
order, meaning that in addition to all second-order terms also
some higher-order terms are included. The SOPPA response
function, however, is not the response of a second-order wave
function.25 Replacing the second-order Møller-Plesset pertur-
bation theory (MP2) correlation coefficients in the SOPPA
equations with the singles,t1, and doubles amplitudes,t2, from
the CCSD wave function, the SOPPA(CCSD) method5 is
obtained. The last method considered here is the CCSDLR
method as described by Koch and Jørgensen.6 In the CCSDLR
method the frequency-dependent polarizability can also be
identified from the time evolution of the dipole moment, which
can be calculated as a transition expectation value between the
coupled cluster state,|CC〉, and a dual state,〈Λ|,

Again, the coefficients describing the time dependence of the
approximate coupled cluster wave functions,|CC(t)〉 and〈Λ(t)|,

are expanded in the perturbation and are determined from the
coupled cluster time-dependent Schro¨dinger equation. The
frequency-dependent polarizability in the CCSDLR method is
then obtained from the term linear in the perturbation in the
expansion of eq 4. The CCSDLR method is the computationally
most expensive and is expected to be the most accurate of the
four methods presented here.

Although both the SOPPA(CCSD) and the CCSDLR methods
build on the CCSD wave function, SOPPA(CCSD) is still only
correct through second order, whereas CCSDLR is really the
response of a CCSD wave function. Since the MP2 correlation
coefficients are the result of the first iteration for the CCSD
amplitudes, the CCSD amplitudes give a more accurate descrip-
tion of the electron correlation. Thus, it may be anticipated
that the SOPPA(CCSD) method will have less tendency to
overshoot the correlation contribution than the SOPPA method.
The accuracy of the methods considered here is therefore
expected to be in the order RPA< SOPPA< SOPPA(CCSD)
< CCSDLR. In addition to the accuracy, the computational
cost of the methods has to be considered, which increases also
from RPA over SOPPA and SOPPA(CCSD) to CCSDLR.

A convenient way of describing the frequency dependence
of the isotropic polarizability is by use of the negative even
dipole oscillator strength sum rules or Cauchy moments,
S(-k), k ) 2, 4, 6, ....26 In terms of these the isotropic dynamic
polarizability can be written as

whereRj ) 1/3∑i)x,y,z Rii and the components of the sum rules
Sare combined in a similar fashion. From the above expression
S(-2) sum rule can be identfied as the static polarizability. The
polarizability anisotropy∆R of a general molecule is defined
as

3. Details of the Calculations

All RPA, SOPPA, and SOPPA(CCSD) calculations were
performed with the DALTON program package,27 whose
SOPPA module28 was modified to perform SOPPA(CCSD)
calculations.5 The CCSD amplitudes were obtained from the
integral-direct coupled cluster program by Koch and co-
workers.29,30 For the CCSDLR calculations the implementation
of this method in the ACES231 program was used.

Two basis sets were employed. Basis set I is Sadlej’s medium
size polarized basis set,32-34 which was also used by McDowell
et al.7 These basis sets are rather small, but are nevertheless
found to give quite reliable results. However, to estimate the
basis limit, also the large daug-cc-pVTZ basis set was used as
basis set II for all molecules. This basis set is Dunning’s
correlation consistent valence triple-ú basis set35 augmented by
two diffuse polarization functions for all angular momenta in
the basis sets added in an even tempered fashion.36,37 In a recent
study by Peterson and Dunning38 on the CO molecule a large
set of the cc-pVnZ basis sets was tested for the calculation of
molecular properties, and it was found that the basis set
employed in this study yields results close to the Hartree-Fock
limit.

The molecular geometries are given in Table 1 and are, where
available, experimental equilibrium geometries.

The dipole oscillator strength sum rulesS(-2), S(-4), and
S(-6) were calculated directly in the RPA, SOPPA, and

µi(t) ) µi(0) + ∫-∞

+∞
dω Rij(-ω;ω)Ej

ω e(-iω+ε)t + ... (1)

µi(t) ) 〈0(t)|µ̂i|0(t)〉 (2)

Rij(-ω;ω) )

-〈0|[µ̂i, h̃]|0〉〈0|[h†,[ω1 - Ĥ, h̃]] |0〉-1〈0|[h†,µ̂j]|0〉 (3)

µi(t) ) 〈Λ(t)|µ̂i|CC(t)〉 (4)

Rj(-ω;ω) ) ∑
k)0

∞

S(-2k - 2)ω2k (5)

∆R ) 1/2[(Rxx - Ryy)
2 + (Ryy - Rzz)

2 + (Rzz- Rxx)
2]1/2 (6)
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SOPPA(CCSD) methods using the method described by Fowler
et al.,39 while the CCSDLR results were found by fitting the
frequency-dependent polarizability calculated for 10 different
optical frequencies in the range frompω ) 0.00 Eh to pω )
0.09 Eh to a polynomial in the square of the frequency. The
optimal degree of the fitting polynomial was determined from
similar fits to data calculated at the RPA, SOPPA, and SOPPA-
(CCSD) levels, which were compared to the sum rules calculated
directly. In most cases fitting polynomials of degrees 3-8 were
found to provide reliable and stable values of the sum rules.
However, as the numerical instabilities increase for higher-order
coefficients in the fitting polynomials, we quote theS(-2) sum
rule or static polarizability with five digits, theS(-4) with four,
and theS(-6) sum rule with three digits. Taking into account
that theS(-6) sum rule is the coefficient of the frequency to
the fourth power, an error on the third digit will lead to errors
which are insignificant compared to other errors in the calcula-
tion, such as the lack of vibrational averaging.

4. Discussion

4.1. Static Isotropic Polarizability. The results for the static
isotropic polarizabilities,Rj , calculated with Sadlej’s medium
size polarized basis sets (basis set I) and the near basis set limit
daug-cc-pVTZ basis sets (basis set II) are collected in Table 2.
At the uncorrelated RPA level, Sadlej’s basis set gives, with
the exception of PH3 and SiH4, smaller values for the isotropic
polarizabilities than basis set II. At the correlated levels,
however, the situation is reversed and larger values forRj are
obtained using basis set I with the few exceptions of Cl2 at the
SOPPA level and HCl, Cl2, and C2H4 at the SOPPA(CCSD)
level. The correlation contribution is thus larger in basis set I
than in basis set II for all molecules except for SiH4 and C2H4

in the SOPPA(CCSD) calculations and for the Cl2 molecule at
the both SOPPA and SOPPA(CCSD) levels. Assuming that
basis set II is the better of the two, one can say that Sadlej’s
medium size polarized basis sets overestimate the correlation
contributions in this set of molecules apart from the exceptions
mentioned above.

Comparing the results of the different methods with the
experimental values forRj , it is most prominent that the RPA
values, independent of the basis set, are lower than the
experimental values for all systems except C2H4 and F2, which
was also observed by Spackman.40 The root-mean-square (rms)
deviation of the RPA results from the experimental values are
6.5% (with a maximum deviation of 13.0%) for basis set I and
6.3% (12.3%) for the larger basis set. The results of the three
correlated methods are for all other molecules than C2H4 and
F2 larger than the RPA results. SOPPA, in particular, tends to

overestimate the correlation correction and gives thus generally
the highest values. For most of the molecules, the SOPPA
values are nevertheless in better agreement with experiment and
the average percentage deviation is only between 4.5% (11.9%)
and 3.7% (10.2%), depending on the basis set. It is further
reduced to between 2.9% (7.0%) and 2.6% (6.3%) at the
SOPPA(CCSD) level. As expected the CCSDLR method is
the most accurate and the mean percentage deviation is only
1.7% (with a maximum deviation of 3.3%), using the smaller
basis set and 1.4% (3.6%) in basis set II. The fact that Sadlej’s
basis set overestimates the correlation correction can lead to
accidentally better agreement with experiment for those mol-
ecules for which the calculated values are smaller than the
experimental ones. This is also the reason for the smaller
maximum percentage deviation of basis set I at the CCSDLR
level.

Comparison of our basis set I results with the study of
McDowell et al.7 shows that the SOPPA results are always larger
than results at the level of second- (MP2) and fourth-order
(MP4) Møller-Plesset perturbation theory, whereas the SOPPA-
(CCSD) results are close to the MP4 values, though generally
lower. The latter are, however, still in better agreement with
experimental data than the SOPPA(CCSD) values for all
molecules but F2 and Cl2. The Brueckner orbitals coupled
cluster variant with perturbative triples corrections (BD(T)) gives
always smaller isotropic polarizabilities than the CCSDLR
method, which does not include any triple excitations, and is
thus for basis set I closer to experiment for HF, HCl, H2O, F2,
Cl2, CO2, and SO2. The CCSDLR results obtained using the
larger basis set, however, are very close to the BD(T) results
of ref 7 and, in fact, for the HF molecule the values are identical.
In a recent study of the electrical properties of the second-row
hydrides by Russell and Spackman41 the pure electronic
contributions to the dipole polarizability and polarizability
anisotropy are very close to the results obtained in this work.
The above-mentioned calculations employ slightly different
geometries and basis sets of triple-ú quality. The SCF results
differ by no more than 1% for the average polarizability. The
MP2 numbers are closer to the SOPPA(CCSD) numbers than
to the SOPPA results, again reflecting the tendency of the
SOPPA method to overestimate the correlation correction.

4.2. Static Polarizability Anisotropy. Table 3 compares
the results for the polarizability anisotropy∆R obtained with
basis sets I and II. In general, Sadlej’s basis set gives larger
values for∆R than the near basis set limit basis set II with few
exceptions: F2, C2H4 at all levels, NH3 at the RPA, H2O at the
SOPPA(CCSD), HCl and H2O in CCSDLR, and Cl2 at all three
correlated levels of approximation. The correlation corrections
are nevertheless again larger with basis set I with the exceptions
of HF and HCl. Quite large differences in the correlation
contribution between the two basis sets are found for NH3, PH3,
and H2S. Besides these three cases, the differences between
the correlation corrections to∆R, predicted using the two basis
sets, are not larger than forRj .

Comparison of the calculated and experimental values of the
polarizability anisotropies is less conclusive than for the isotropic
static polarizabilities. The experimental values are usually less
accurate than for the mean polarizability, since they are more
difficult to measure. In addition some of the experimental data
in Table 3 are not static values. Nevertheless it can be
concluded that the overall agreement between theory and
experiment for∆R is not as good as forRj . This is to be
expected, since a much higher accuracy of the individual tensor
components is required for accurate anisotropies∆R than for

TABLE 1: Molecular Geometries

molecule geometry

HF RHF ) 0.917 Åa

HCl RHCl ) 1.2746 Åa

H2O RHO ) 0.9572 Å,∠HOH ) 104.52° b

H2S RHS ) 1.328 Å,∠HSH ) 92.2° b

NH3 RNH ) 1.012 Å,∠HNH ) 106.67° b

PH3 RPH ) 1.421 Å,∠HPH ) 93.34° b,c

CH4 RCH ) 1.094 Åb

SiH4 RSiH ) 1.4811 Å
F2 RFF ) 1.4119 Åa

Cl2 RClCl ) 1.9879 Åa

C2H4 RCH ) 1.103 Å, RCC ) 1.337 Å,∠HCH ) 125.6°
CO2 RCO ) 1.1621 Åb,c

SO2 RSO ) 1.4308 Å,∠OSO) 119.3° b

a Reference 44.b Reference 45.c r0,R0 value.
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Rj of the same accuracy.42 Most striking is the erratic behavior
of the RPA for H2O, H2S, and especially NH3, leading to an
rms percentage deviation of 26.9% with a maximum deviation
of 73.9% for basis set I and 26.8% (73.0%) for basis set II.
RPA predicts larger values for∆R than the correlated methods
for HF, HCl, F2, Cl2, H2O, and C2H4 and smaller values for
NH3, PH3, H2S, CO2, and SO2. With the exceptions of H2O,
in both basis sets, and H2S, in basis set I, SOPPA gives again
higher values than SOPPA(CCSD) and CCSDLR. For the PH3

molecule in both basis sets and H2S in basis set II, the SOPPA
value is between the SOPPA(CCSD) and CCSDLR results. The
rms percentage deviations for SOPPA is 18.4% (38.3%) in basis
set I and 16.5% (31.5%) in basis set II. The SOPPA(CCSD)
results are again in overall better agreement with a rms
percentage deviations of 17.9% (basis set I) and 12.5% (basis
set II), but the maximum deviations are 45.1% and 25.1%,
respectively, and thus the largest error for basis set I is larger
in SOPPA(CCSD) than in SOPPA. Finally, the rms percentage
deviations of CCSDLR using basis set I is 13.8% (36.1%) and
in basis set II 11.7% (18.7%), reflecting a better agreement with
experiment than SOPPA(CCSD) apart from HF, HCl, H2S, and
NH3.

Contrary toRj , the SOPPA values for∆R are smaller than
the MP2 and MP4 results of McDowell et al.7 with the exception
of H2S, whereas the SOPPA(CCSD) results are again close to
the MP4 values apart from the results for CO2 and SO2. The
triples corrections in the BD(T) method lead also to smaller
values for∆R compared with CCSDLR for all molecules but
F2, H2, and NH3. However, it cannot be said which of the two
methods performs better in general. Using the large daug-cc-
pVTZ basis set decreases the error for the CCSDLR results,

and the comparison with the experimental values is generally
more favorable than that for the BD(T) results using Sadlej’s
basis set (basis set I).

4.3. Frequency Dependence.The frequency dependence
of the isotropic polarizability, expressed in terms of the dipole
oscillator strength sum rules or Cauchy momentsS(-4) and
S(-6), is given in Tables 4 and 5. As for the static mean
polarizability values obtained forS(-4) at the RPA level using
Sadlej’s basis set (I) are smaller than those using the daug-cc-
pVTZ basis set (II) except for the CH4, SiH4, C2H4, and SO2

molecules. ForS(-6) the situation is identical, but here only
CH4 and SO2 have larger sum rules using basis set I than using
basis set II. The dispersion at the RPA level is thus for most
molecules smaller with Sadlej’s basis set. At the correlated
levels the situation is reversed, as basis set I gives smaller values
of the sum rules only for HCl and Cl2. Thus, as was found for
the static isotropic polarizability Sadlej’s basis set also over-
estimates the correlation corrections to the dispersion of the
mean polarizability.

The RPA values forS(-4) andS(-6) for all molecules but
C2H4 and F2 are smaller than the correlated results. Correlation
thus increases the dispersion of the mean polarizability for all
but these two molecules. This is expected since it is often seen
that the lowest lying excitation is too high in RPA compared to
correlated calculations, and the higher Cauchy moments are
dominated by the lowest lying excitations. Comparison of the
three correlated methods shows that SOPPA gives the largest
values for the dispersion of the mean polarizability (S(-4) and
S(-6)), again overestimating the correlation contribution for
most molecules. This is often observed in the SOPPA method
as it tends to overestimate the correlation contribution to the

TABLE 2: Static Isotropic Polarizabilities rj (e2a0
2Eh

-1)

basis set I basis set II

RPA SOPPA
SOPPA
(CCSD) CCSDLR RPA SOPPA

SOPPA
(CCSD) CCSDLR exptl

HF 4.874 6.085 5.818 5.724 4.913 5.952 5.731 5.637 5.60a

HCl 16.664 17.671 17.352 17.499 16.728 17.651 17.368 17.467 17.39a

H2O 8.492 10.319 9.939 9.824 8.538 10.089 9.782 9.649 9.64b

H2S 23.614 24.922 24.343 24.604 23.681 24.756 24.243 24.446 24.71c

NH3 12.926 14.736 14.366 14.411 12.960 14.441 14.161 14.155 14.56b

PH3 29.915 31.120 30.184 30.674 29.829 30.881 30.076 30.506 30.93d

CH4 16.120 16.853 16.520 16.709 16.217 16.754 16.510 16.654 17.27e

SiH4 29.960 31.414 30.742 31.467 29.776 31.153 30.606 31.243 31.90d

F2 8.593 8.903 8.525 8.550 8.597 8.760 8.456 8.465 8.38d

Cl2 29.886 31.346 30.556 30.905 29.939 31.411 30.651 30.894 30.35,d 30.417f

C2H4 28.303 28.329 27.482 27.534 28.493 28.145 27.537 27.531 27.70g

CO2 15.841 19.444 18.726 18.013 15.920 19.238 18.611 17.831 17.51h

SO2 23.653 28.659 27.407 26.444 23.698 28.235 27.116 26.055 25.61i

a Reference 13.b Reference 8.c Reference 14.d Reference 46.e Reference 9.f Reference 16.g Reference 11.h Reference 10.i Reference 12.

TABLE 3: Static Polarizability Anisotropies ∆r (e2a0
2Eh

-1)

basis set I basis set II

RPA SOPPA
SOPPA
(CCSD) CCSDLR RPA SOPPA

SOPPA
(CCSD) CCSDLR exptl

HF 1.285 1.244 1.204 1.170 1.251 1.187 1.165 1.146 1.33a

HCl 1.867 1.832 1.677 1.722 1.846 1.786 1.642 1.735 1.51a

H2O 1.165 0.470 0.497 0.521 1.103 0.459 0.502 0.545 0.67a,d

H2S 0.393 0.848 0.974 0.912 0.383 0.564 0.670 0.546 0.67b,e

NH3 0.520 2.019 1.919 1.892 0.524 1.806 1.710 1.653 1.94b,e

PH3 1.001 1.726 1.767 1.605 0.969 1.475 1.539 1.356
F2 9.025 6.038 5.657 5.727 9.079 6.213 5.954 6.007
Cl2 18.320 17.704 16.595 16.962 18.285 17.918 16.804 17.199 17.53a,e

C2H4 12.072 10.781 9.819 10.398 12.079 10.833 9.928 10.420 11.4b

CO2 12.099 18.368 17.020 15.427 11.757 17.676 16.383 14.732 13.83c

SO2 12.571 17.976 16.382 14.799 12.007 16.936 15.501 13.937 13.0b

a Reference 46.b Reference 42.c Reference 47.d Dynamic value at 514.5 nm.e Dynamic value at 632.8 nm.
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lowest lying excitations. Using the CCSDLR method, the
smallest correlated values are obtained with the exception of
S(-4) for PH3, CH4, and SiH4 in basis set I and SiH4 in basis
set II.

Comparison with the experimental sum rules shows that the
RPA S(-4) andS(-6) sum rules are smaller than the experi-
mental ones except for C2H4, as previously shown by Spack-
man,40 whereas the SOPPA sum rules are for all molecules but
CH4, larger than and in better agreement with the experimental
data. The rms deviations for theS(-4) sum rules are in basis
set I 22.0 (RPA), 15.4 (SOPPA), 11.9 (SOPPA(CCSD)), and
4.3% (CCSDLR) and in basis set II 21.3 (RPA), 12.4 (SOPPA),
10.6 (SOPPA(CCSD)), and 6.1% (CCSDLR). The deviations
for theS(-6) sum rules are about twice the ones for theS(-4)
sum rules showing the increased difficulty in calculating the

high-order Cauchy moments. An interesting point is that both
in the SOPPA and SOPPA(CCSD) methods theS(-6) sum rules
for the SO2 molecule has an error of about 100%.

In Table 6 we give our best values for the isotropic
polarizability for five commonly used experimental frequencies
using the dipole oscillator strength sum rules calculated at the
CCSDLR level with basis set II. We also give estimates of the
polarizability anisotropy calculated from an interpolation of the
anisotropy calculated at 10 frequencies (the same that were used
in the fit to get the oscillator strength sum rules) by a polynomial
of degree 5 in the square of the frequencies. It should be
remembered that these values are pure electronic values not
including any vibrational averaging. On the basis the rms
deviations seen above for both the static polarizability and the
dipole oscillator strength sum rules, we expect that the

TABLE 4: Isotropic Dipole Oscillator Strength Sum Rules S(-4) (e2a0
2Eh

-3)

basis set I basis set II

RPA SOPPA
SOPPA
(CCSD) CCSDLR RPA SOPPA

SOPPA
(CCSD) CCSDLR exptl

HF 8.267 15.51 14.47 12.62 8.611 15.05 14.21 12.45 14.40a

HCl 58.83 71.49 68.87 67.57 60.23 71.51 69.05 67.59 67.12a

H2O 23.07 43.07 40.40 35.39 23.62 40.64 38.61 33.92 35.42b

H2S 120.0 144.5 137.4 135.5 121.7 140.9 134.5 132.1 138.3c

NH3 49.00 79.60 75.35 70.70 49.35 74.49 71.44 66.76 71.44b

PH3 182.3 205.6 191.1 191.5 182.7 201.9 189.4 188.7
CH4 52.71 60.73 58.03 58.12 52.44 58.35 56.37 56.24 62.41,d 63.22e

SiH4 147.7 168.2 159.1 165.9 147.1 166.5 158.9 164.6
F2 20.74 20.83 19.72 17.07 20.76 20.84 20.05 17.16
Cl2 114.9 136.6 129.7 123.1 115.9 137.6 130.9 123.2 138( 5f

C2H4 166.8 163.7 153.9 140.7 166.5 157.5 151.3 137.4 143.5,g 146.7e

CO2 37.53 70.59 67.83 52.17 37.56 68.55 66.62 50.26 50.99h

SO2 101.3 170.7 165.5 117.0 100.4 164.9 162.2 113.0 115.6i

a Reference 13.b Reference 8.c Reference 14.d Reference 9.e Reference 15.f Reference 16.g Reference 11.h Reference 10.i Reference 12.

TABLE 5: Isotropic Dipole Oscillator Strength Sum Rules S(-6) (e2a0
2Eh

-5)

basis set I basis set II

RPA SOPPA
SOPPA
(CCSD) CCSDLR RPA SOPPA

SOPPA
(CCSD) CCSDLR exptl

HF 22.7 71.4 65.5 49.0 24.7 66.0 61.8 47.0 68.96a

HCl 276 410 386 369 300 414 391 374 389.3a

H2O 106 357 328 240 112 308 290 217 240.1b

H2S 874 1294 1189 1150 923 1225 1131 1094 1136c

NH3 330 889 814 689 339 774 727 615 684.0b

PH3 1544 1924 1698 1694 1560 1845 1653 1634
CH4 219 283 263 250 216 261 246 243 298.3,d 293.8e

SiH4 823 1029 939 1007 823 1011 935 995
F2 80.1 111 103 65.0 80.8 104 100 63.0
Cl2 657 1137 1005 828 670 1143 1010 820
C2H4 1632 1526 1401 1127 1641 1445 1375 1090 1202,f 1227e

CO2 120 354 344 206 121 340 337 194 211.4g

SO2 1238 2429 2542 1147 1164 2319 2502 1089 1227h

a Reference 13.b Reference 8.c Reference 14.d Reference 9.e Reference 15.f Reference 11.g Reference 10.h Reference 12.

TABLE 6: Frequency-Dependent Dipole Polarizabilities (e2a0
2Eh

-1) at the CCSDLR Level Using Basis Set II

for given wavelengths, nm

632.990 594.096 543.516 514.500 325.130

molecule Rj ∆R Rj ∆R Rj ∆R Rj ∆R Rj ∆R
HF 5.703 1.147 5.712 1.147 5.727 1.146 5.738 1.146 5.900 1.143
HCl 17.827 1.692 17.877 1.685 17.960 1.674 18.020 1.665 18.939 1.517
H2O 9.831 0.460 9.856 0.448 9.898 0.427 9.928 0.412 10.399 0.156
H2S 25.160 0.905 25.261 0.960 25.428 1.053 25.549 1.122 27.462 2.341
NH3 14.517 2.006 14.569 2.059 14.655 2.148 14.716 2.212 15.703 3.326
PH3 31.528 1.613 31.672 1.651 31.913 1.716 32.086 1.763 34.842 2.577
CH4 16.952 16.993 17.061 17.110 17.852
SiH4 32.123 32.246 32.449 32.595 34.859
F2 8.556 6.122 8.568 6.138 8.589 6.164 8.603 6.182 8.826 6.461
Cl2 31.554 17.764 31.647 17.842 31.800 17.971 31.911 18.064 33.630 19.466
C2H4 28.272 10.964 28.377 11.042 28.550 11.172 28.676 11.267 30.650 12.807
CO2 18.097 15.104 18.133 15.156 18.194 15.241 18.237 15.303 18.893 16.238
SO2 26.670 14.502 26.757 14.582 26.903 14.714 27.008 14.810 28.694 16.321
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frequency-dependent values all are within 5% of the experi-
mental values, even though the majority of the molecules may
be even more accurately described. For the anisotropy an
estimate of the error is difficult to give since experimental results
are not known for all molecules. However, it is expected that
the accuracy is not as high as for the isotropic polarizability.

The size of vibrational corrections to our results is difficult
to give. Recent investigations by Russell and Spackman41,43

show that averaging the static dipole polarizability in the
vibrational ground state (zero-point vibrational averaging)
changes the property by only a small amount. For the dipole
polarizability the change is seen to be around 1-2%. The
polarizability anisotropy is more sensitive, giving in some cases
changes of close to 10%. A direct comparison of the properties
obtained in this work is, however, not possible, since Russell
and Spackman have employed basis sets and geometries
different from those we have used. It is obvious, though, that
a large fraction of the remaining discrepancy between our results
and the experimental values can be removed by including the
zero-point vibrational corrections. A problem associated with
the calculation of vibrational averaged properties is that it
requires the evaluation of the properties in question for several
different geometries, a problem which makes their calculation
computationally quite demanding and is therefore outside the
scope of this investigation.

5. Summary
With comparison of the two basis sets it was found for the

majority of the molecules studied here that Sadlej’s medium
size polarized basis sets give smaller values of the static
polarizability and the Cauchy moments at the RPA level and
larger values at the correlated levels than the daug-cc-pVTZ
basis sets. The correlation corrections to these quantities is thus
overestimated in Sadlej’s basis sets. The polarizability anisotro-
pies obtained with the medium size polarized basis sets are for
most molecules larger than the daug-cc-pVTZ results indepen-
dent of the method. Nevertheless, the contribution of electron
correlation to the anisotropy is again overestimated using the
medium size polarized basis sets. The agreement with experi-
mental data is in general better for the mean static polarizability
than for the dispersion and the anisotropy. Comparison of the
four methods shows that for the majority of molecules in this
study the accuracy of the four methods increases in the following
sequence: RPA< SOPPA< SOPPA(CCSD)< CCSDLR. In
particular, the RPA predicts smaller static values and dispersions
of the mean polarizability than those found experimentally,
whereas nothing general can be said about the polarizability
anisotropy. SOPPA, on the other hand, gives larger values and
thus tends to overestimate the correlation corrections to the mean
polarizability and Cauchy moments. The agreement with the
experimental values is nevertheless in general better at the
SOPPA level. The usage of the coupled cluster amplitudes in
SOPPA(CCSD) reduces the tendency to overestimate the
correlation correction and SOPPA(CCSD) results are thus closer
to the CCSDLR results and the experimental data than the
SOPPA values. For the static isotropic and anisotropic polar-
izability the SOPPA(CCSD) results were found to be close to
MP4 results. Finally, the CCSDLR results agree best with the
experimental data, as is to be expected. We expect that inclusion
of vibrational corrections such as zero-point vibrational averag-
ing will remove most of the remaining discrepancy between
experimental values and our results. The calculation of these
remains, however, a subject for further investigations.
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